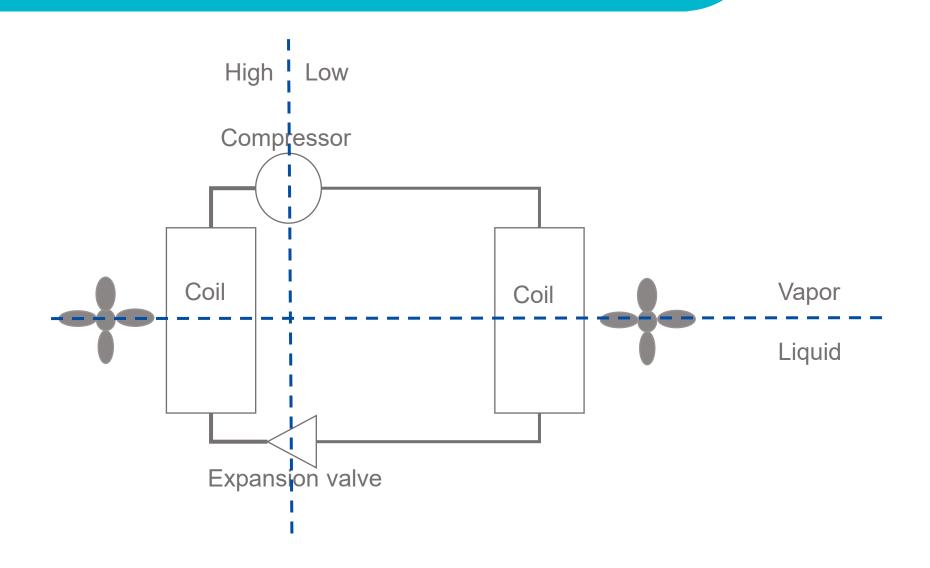
HEAT PUMPS Doug Dettlaff and Nancy Alberte October 29, 2025

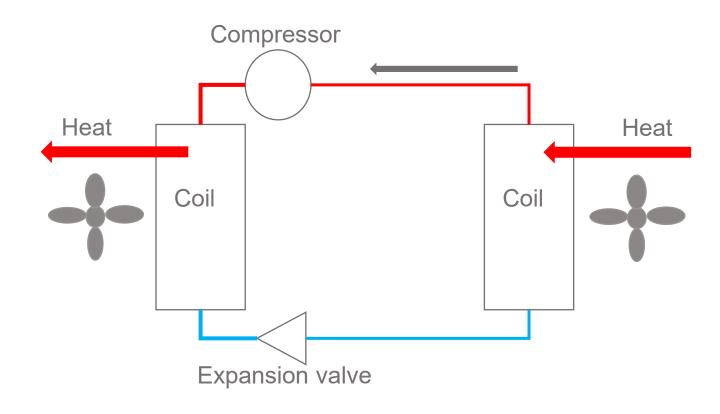
HEAT PUMPS

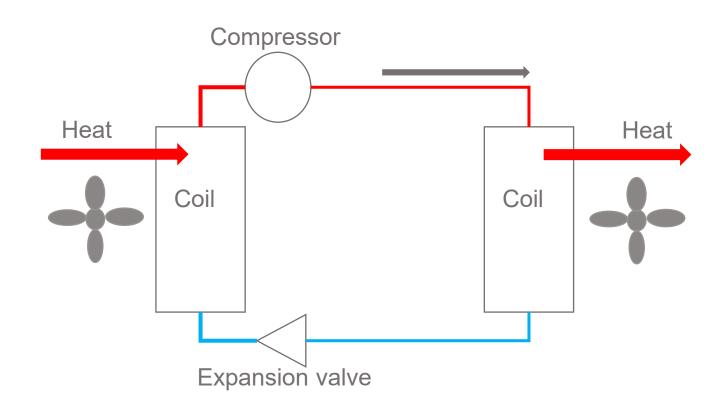
- The "How?"
- The "Where?"
- The "Why?"
- Additional Resources.

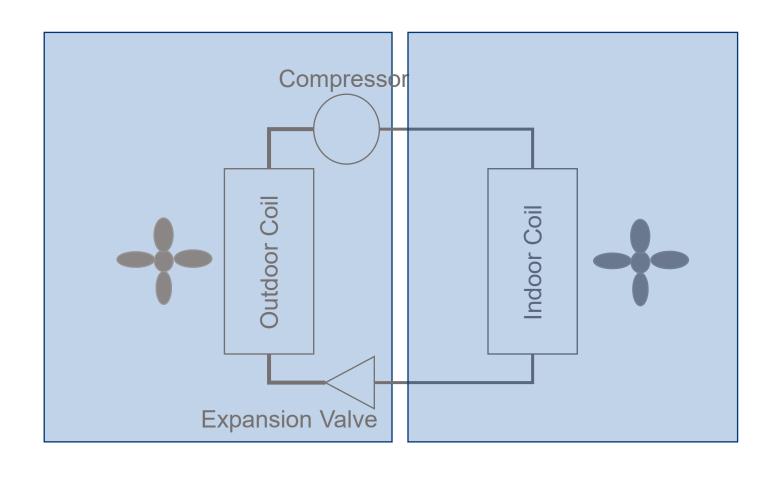
THE "HOW?"



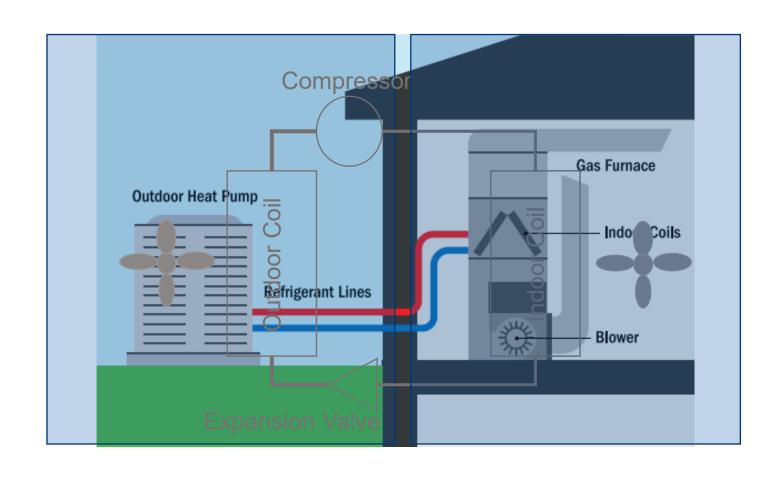
HOW HEAT PUMPS WORK

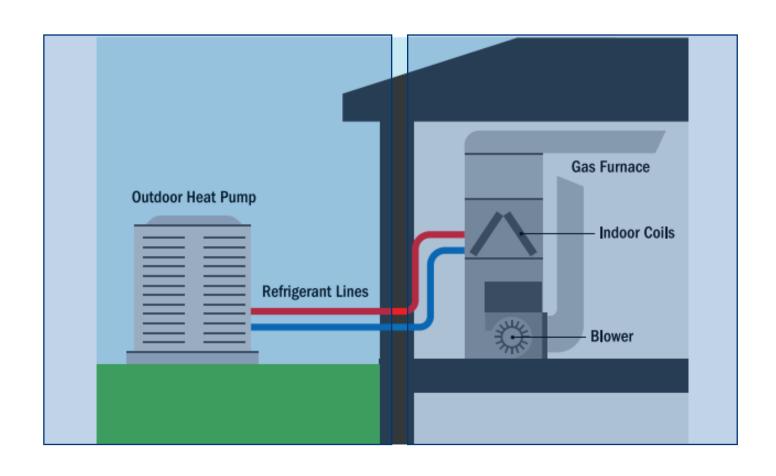

- Move Heat Instead of Generating It.
 - Efficiencies > 100%.
- Fully Functional Air Conditioners.
- Replace Existing Heating and Cooling.
- Offset Existing Heating and Cooling.
- Provide Heating and Cooling Where There Was None Before.

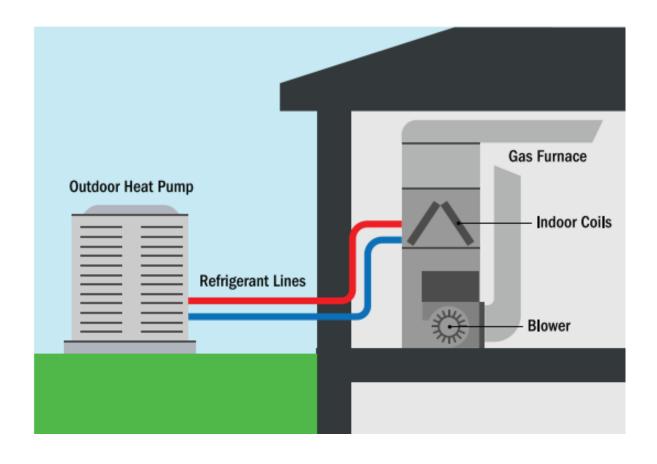

REFRIGERATION CYCLE: COOLING

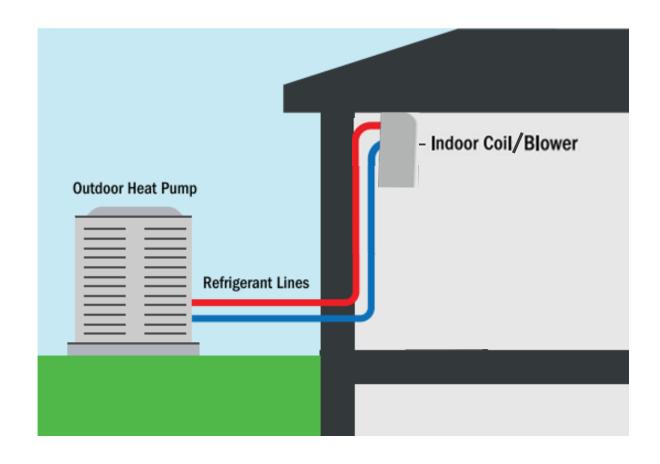


REFRIGERATION CYCLE: HEATING








REFRIGERATION CYCLE: DUCTED HEAT PUMP

REFRIGERATION CYCLE: DUCTLESS HEAT PUMP

THE "WHERE?"

• Ducted:

- Homes with forced air.
- Higher airflow than a furnace.
 - ~400 cubic feet per minute (CFM) per 12,000 British Thermal Units per hour (BTUh) for air source heat pumps.
 - ∼180 CFM per 12,000 Btuh for furnaces.
- Most ductwork is undersized.
 - Noise?
 - Freezing air conditioner coil?
- Most furnaces are oversized.
- Is it a wash?
 - Manual J is needed for sizing.
 - System sizing for heating load vs. cooling load.
 - Ductwork reconfiguration to make sure the system can deliver air.

Ductless:

- Homes without forced air.
- Additions/trouble spots.
- Can it work for a whole home?
 - Multiple indoor units?
 - Multiple outdoor units?

- Dual-Fuel System:
 - Uses natural gas (NG)/liquid propane (LP)/oil as a backup.
 - Separate units or combined in one.
- All Electric:
 - Uses electric resistance as a backup.
 - Separate units or combined in one.

Other Considerations:

- Is the air colder?
 - Register temperature for both should be ~100 °F.
 - But heat pump is likely moving more air.
 - Let the customer know.
 - Where do they sit most of the time?

Other Considerations:

- Condensate drain.
 - At the indoor unit during cooling.
 - At the outdoor unit during heating (defrost too).
- Defrost.
 - Additional energy use.
 - Water will drain around the unit in winter (ice).
 - Unit may output some "cold" air during heating.
- Maximize distribution of air.
 - Inside.
 - Outside.

- Other Considerations:
 - Mount unit above the snow line.

THE "WHY?"

• It Is Efficient:

- Furnace.
 - Existing: 65% to 92%.
 - New: 95%+.
- Boiler.
 - Existing: 65% to 84%.
 - New: 95%+.
- Electric Resistance.
 - Existing: 100%.
 - New: 100%.
- Heat Pump.
 - Lowest point: 110%?
 - Highest point: 200%, 300%, 400%???

- Efficiency Progression:
 - Reduce your use.
 - Turn it off/unplug it.
 - Install water saving showerheads and aerators.
 - Insulate and air seal.
 - Install more efficient equipment.
 - Lighting.
 - Heating and cooling.
 - Water heater.
 - Appliances.
 - · Renewables.

- Does It Make Financial Sense?
 - Electric.

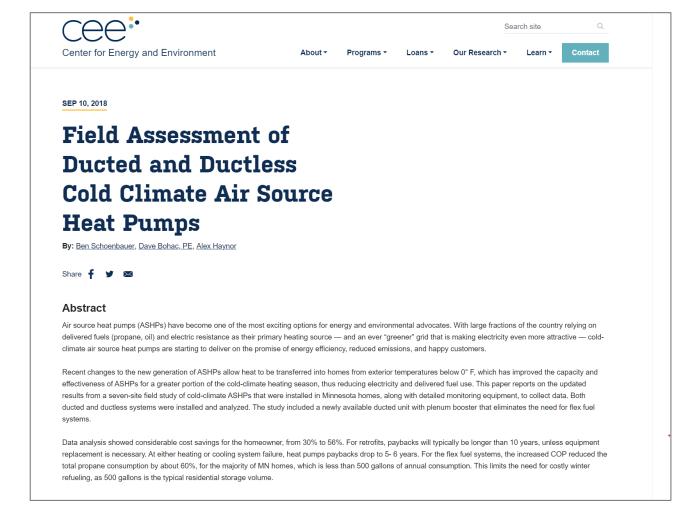
\$/kWh	\$ 0.10
Equipment Efficiency	100%
\$/MMBtu	\$ 29.31

· NG.

\$/Therm	\$ 1.00
Equipment Efficiency	92%
\$/MMBtu	\$ 10.87

· LP.

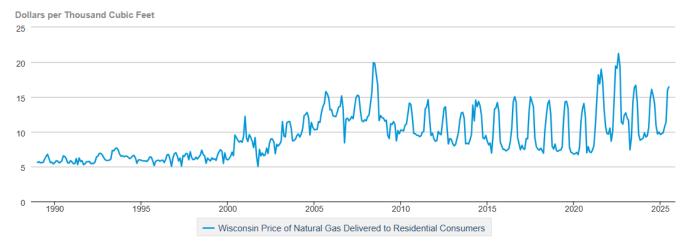
\$/Gal of LP	\$ 1.50
Equipment Efficiency	92%
\$/MMBtu	\$ 17.92


Does It Make Financial Sense?

Natural gas rate, \$/therm, (furnaces and boilers)

		\$0.60	\$0.65	\$0.70	\$0.75	\$0.80	\$0.85	\$0.90	\$1.00	\$1.15	\$1.33	\$1.50	\$2.00	\$2.50	\$2.75
Electric rate, \$/kWh (ASHP)	\$0.05	25°	20°	15°	10°	5°	0°	-5°	-10°	-10°	-10°	-10°	-10°	-10°	-10°
	\$0.06	35°	30°	25°	20°	15°	15°	10°	°°	-10°	-10°	-10°	-10°	-10°	-10°
	\$0.07	45°	40°	35°	30°	25°	25°	20°	10°	0°	-10°	-10°	-10°	-10°	-10°
	\$0.08	50°	45°	40°	40°	35°	30°	25°	20°	10°	0°	-10°	-10°	-10°	-10°
	\$0.09	60°	55°	50°	45°	40°	40°	35°	30°	20°	10°	0°	-10°	-10°	-10°
	\$0.10	60°	60°	55°	50°	50°	45°	40°	35°	25°	15°	10°	-10°	-10°	-10°
	\$0.11	60°	60°	60°	60°	55°	50°	45°	40°	30°	25°	15°	-5°	-10°	-10°
	\$0.12	60°	60°	60°	60°	60°	55°	50°	45°	35°	30°	20°	0°	-10°	-10°
	\$0.13	60°	60°	60°	60°	60°	60°	55°	50°	40°	35°	25°	5°	-10°	-10°
	\$0.14	60°	60°	60°	60°	60°	60°	60°	55°	45°	35°	30°	10°	-5°	-10°
	\$0.15	60°	60°	60°	60°	60°	60°	60°	60°	50°	40°	35°	15°	0°	-5°
	\$0.16	60°	60°	60°	60°	60°	60°	60°	60°	55°	45°	40°	20°	5°	0°
											\$1.22	\$1.37	\$1.83	\$2.29	\$2.52

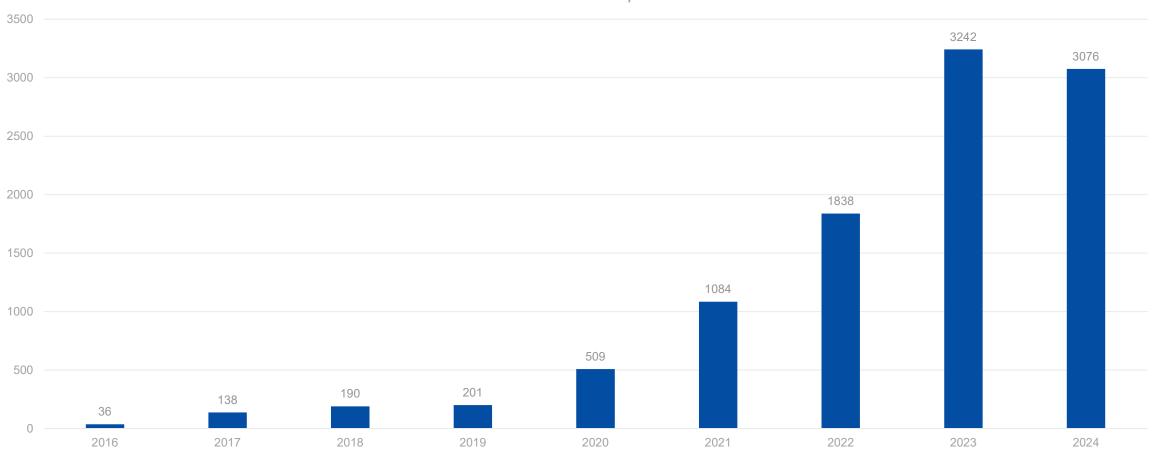
- In Wisconsin? What About In Minnesota?
 - 46%-56% energy savings.
 - 33%-53% heating savings.
 - Between \$369 and \$764 saved per year.



- Look at the data:
 - Study of LP and electric offset, not NG.
 - NG savings will be significantly less.
 - Tens of dollars, not hundreds.

- Does It Make Environmental Sense?
 - Carbon/greenhouse gas emissions.
- Insurance Against Price Changes.
 - NG was:
 - ~\$0.70 in January 2021.
 - ~\$0.97 in January 2022.
 - ~\$1.27 in January 2023.
 - ~\$0.91 in January 2024.
 - ~\$0.96 in January 2025.

Wisconsin Price of Natural Gas Delivered to Residential Consumers



- Focus on Energy Rebates for Tribal Nations.
 - 80% of project cost, up to \$3,000 (single family).
 - \$800 to \$1,000 (multifamily).
- Inflation Reduction Act
 - HOMES
 - Any income level
 - Modeled savings
 - Up to \$10,000 (can include heat pumps)
 - HEAR
 - Incomes less than 150% AMI
 - Rebate per product
 - Up to \$14,000 (up to \$8K for heat pumps)

HEAT PUMP HISTORY

Residential Heat Pump Rebates

ADDITIONAL RESOURCES

ADDITIONAL RESOURCES

- focusonenergy.com/equipment/heat-pump
 - Videos
 - Heat pump definitions.
 - Heat pump buyers guide.
 - Heat pump research (National and Focus).

CONTACT INFORMATION

Doug Dettlaff, Program Consultant

- 608.250.2390
- doug.dettlaff@focusonenergy.com

Nancy Alberte, Senior Market Outreach Specialist

- 608.358.8212
- nancy.alberte@focusonenergy.com

